
Improved Performance of Aurora 4 using HTK and Unsupervised MLLR
Adaptation

Siu-Kei AU YEUNG, Man-Hung SIU

Department of Electrical and Electronic Engineering
Hong Kong University of Science and Technology, Hong Kong

jeffay@ust.hk, eemsiu@ust.hk

Abstract

The introduction of Aurora 4 tasks provides a standard database
and methodology for comparing the effectiveness of different
robust algorithms on LVCSR. One important issue on Aurora
4 tasks is the computation time involved in evaluating different
test conditions. In this paper we show that by employing HTK
as the recognition frontend and backend on Aurora 4 tasks with
the use of cepstral mean subtraction, 14% relative improvement
is achieved on the baseline clean train tasks at a 82.5% time re-
duction in training time and 40% time reduction on decoding.
Furthermore, we found that optimizing the model complexity
can increase the recognition performance (in both computation
time and accuracy). Accuracy can be further improved with the
use of unsupervised MLLR adaptation on one or multiple sen-
tences. The adaptation results show that most of the gain from
adaptation comes from adapting to the environment instead of
to the speaker. With the use of adaptation,the error rate is re-
duced from the baseline result of 69.6% to 40%.

1. Introduction
For the automatic speech recognition technologies to be useful
in real-world environments, the recognition system must main-
tain performance under varying noise and channel conditions.
Different algorithms were proposed by researchers that showed
various degrees of success. To allow an easy comparison be-
tween the results from different algorithms and researchers, a
standard training and testing database with common evaluating
criterion would be necessary.

The Aurora tasks [1] belong to these standard tasks and fo-
cus on noise-robust distributed speech recognition applications.
The Aurora corpora and the associated standard evaluations
have spurred tremendous research interest and progress [2]. The
Aurora databases contain speech data with different noise types,
noise levels and channels. Aurora 2 and 3 corpora both focus on
small vocabulary continuous speech recognition tasks on digit
speech. Aurora 2 contains only English speech data with arti-
ficially added noises while Aurora 3 contains speech from four
different European languages recorded under real noisy envi-
ronments.

As the complexity of ASR increases, research on robust
speech recognition changes from small vocabulary tasks to large
vocabulary tasks. The Aurora 4 database is part of the ETSI
standardization process that evaluates the performance of robust
techniques in LVCSR tasks in the presence of noise. Aurora 4
focuses on recognition using the standard SI-84 WSJ train-set
and Nov’92 5000 words evaluation set. Six noisy environments
and one clean environment are considered in the evaluation set
under two different channel conditions. Two sampling frequen-

cies (8kHz and 16kHz) are available for both training and test-
ing data.

One main challenge in regard to robust LVCSR is the large
number of tests to perform under different noise conditions. The
computation of the test can grow quickly as the number of chan-
nel, noise type and SNR are enumerated. Thus, an efficient
baseline system for training and decoding are vital. To address
this issue, for example, the Aurora 4 scripts suggest the use of
4-mixture components in the HMM acoustic models to reduce
experiment time.

The recognizer developed for the Aurora 4 is based on the
system developed by ISIP [3] and ETSI WI007 frontend [4].
ISIP system provides a user-friendly interface to perform the
whole training and evaluation process. Special features such
as end-point detection, multi-CPU training and testing are in-
cluded.

The hidden Markov model toolkit (HTK)1 [5] is another
widely used recognition system. In this paper, we describe our
experience of using HTK to perform the Aurora 4 tasks and
its effect on recognition accuracy and computational efficiency.
Also, we describe the differences between the systems and how
we handled parameter tuning and setting.

Furthermore, we investigated the effect of varying the
model complexity as well as the use of MLLR adaptation for
noise robustness. The use of MLLR for noise robustness has
been discussed by other researchers. In our experiments, we
focused on un-supervised adaptation and endeavoured to de-
couple the effect of adapting to the speaker and adapting to the
environment.

The organization of this paper is as follows. In Section 2, an
analysis of the baseline system on Aurora-4 using HTK is pre-
sented. In Section 3 we present how model complexity relates
to robustness in Aurora 4. The study of noise adaptation on Au-
rora 4 using MLLR is discussed in Section 4 and the paper is
concluded in Section 5.

2. Aurora 4 Baselines
2.1. Aurora 4 Baseline Using the ISIP System

The standard Aurora 4 task evaluation is based on the stan-
dardized ETSI mel-cepstrum front-end(ES 201 108) and
Mississippi State University (ISIP) recognizer as the backend.
Four mixtures cross-word tripohone models was trained in
both clean and multi conditions. 14 testsets with different
noise and channel conditions are evaluated. In our experiment,
we focused on the tasks of 16kHz speech without data com-
pression. The 14 testsets are grouped into the following four

1We used version3.2



families with the number inside the brackets representing the
set number defined in Aurora 4 databases.

1. Testset A : clean data in the same channel as in training
(set 1)

2. Testset B : noisy data in the same channel as in training
(sets 2 to 7)

3. Testset C : clean data in a different channel as in training
(set 8)

4. Testset D : noisy data in a different channel as in training
(sets 9 to 14)

The results of our reproduction of the Aurora 4 standard
baseline of clean and multi condition training data are tabulated
in Table 1 and Table 2 respectively. They generally matched the
result presented in [3].

Table 1: Aurora 4 standard baseline clean train (frontend:
ETSI, backend: ISIP) .

Testset A B C D Avg.
WER 14.5% 69.3% 60.6% 81.43% 69.6%

Table 2: Aurora 4 standard baseline multicondition train (fron-
tend: ETSI, backend: ISIP) .

Testset A B C D Avg.
WER 23.5% 31.3% 47.4% 48.8% 39.3%

2.2. Experimental design of Aurora4 tasks using HTK

In our other work [6] and in the Aurora 2 and 3 experiments,
HTK was used as the standard system for training and decoding.
Because of this, it may be also of interest to the community to
see the performance of using HTK on the Aurora 4 task.

Our experimental setup on Aurora4 used HTK for both
frontend and backend2, that is, the ETSI frontend was replaced
by the HTK frontend using similar frontend parameters. The
feature extraction process was generally the same between ETSI
and HTK except that HTK frontend performs liftering. HTK
also allows for cepstral mean subtraction and the results are de-
scribed in a later section.

For the recognition backend process involving model train-
ing and decoding, HTK replaced the ISIP recognition system.
We made the training setting used in both systems as close as
possible to those mentioned in [3]. In state clustering, 3215
tied states were used in HTK compared to 3202 states reported
in [3]. However, to speed up training in HTK, pruning was ap-
plied. In decoding, the settings of the two systems (HTK and
ISIP) were made as close as possible. The main difference be-
tween the two system was the pruning. The ISIP ASR support
three levels of pruning (state, phone and word) while HTK only
supports state pruning. The state pruning width was set to 300
which is larger in numerical value than the setting in ISIP’s. In
addition, whenever pruning error occurs such that the recogni-
tion cannot reach the end of the sentence for a valid hypothesis,
HTK does not generate any hypothesis thus results in a whole
sentence being deleted while the ISIP system generates a partial
decoding result. In Table 3 the key features of the HTK baseline
system on Aurora 4 compared with the ISIP system are summa-
rized.

2scripts available at http://ihome.ust.hk/˜jeffay/Aurora4 htk.tgz

Table 3: Summary of HTK baseline system on Aurora 4.

Running Machine P4-2.4GHz
Data Storage a separate file sever

Frontend CMS is performed and
dynamic parameters are generated

Backend training and decoding using HTK
training process 4 mixture xwrd-triphone

with pruning=250
decoding process state pruning=250

and blank pruned sentences
during evaluation

2.3. Performance Comparison between HTK and ISIP sys-
tems

We started the HTK experiments by using a frontend without
CMS and a prune width of 300. In Table 4 the clean training
result of Aurora 4 task using the HTK system is summarized.
Compared with the result using ISIP system (Table 1), an over-
all of 7.3% improvement is obtained. This is somewhat surpris-
ing since both system were set up in more or less the same way.
The only uncertainty may be the prune width used.

Table 4: HTK baseline clean train(frontend: HTK, backend:
HTK) no CMS, 4mixture, pruning=300 .

Testset A B C D Avg.
WER 13.1% 62% 60.1% 76.7% 64.7%

Relative 9.7% 10.5% 1.9% 5.7% 7.3%
imp. (ISIP)

We improved our baseline of Aurora 4 by applying the Ce-
spstral Mean Subtraction(CMS) on the training data and testing
data. In order to speed up the process, the prune width on de-
coding was decreased from 300 to 250. The results for clean
training and multi-condition training are tabulated in Table 5
and Table 6. For the clean training set, another 7.5% improve-
ment is obtained. The improvement, more than 30% is partic-
ularly significant in Testset C. The result suggests that CMS is
effective in reducing part of the channel effect in the Aurora 4
task. However, the accuracy of the test-set C is still significantly
worse than test-set A which has the matched channel.

A similar overall improvement was obtained in the multi-
condition experiment when using HTK and CMS.

As clean training has a more significant mis-match between
test and training and because this can demonstrate the useful-
ness of the algorithms, we focus on the clean train experiment
in the rest of this paper using the result in Table 5 as a baseline.

In addition to comparing the recognition accuracy, we also
compare the processing time between HTK and the Aurora sug-
gest ISIP recognizer system. The timing results are summarized
in Table 7. Because we used a more powerful computer than re-
ported in [3], we needed only 40 hours to train a four mixtures
cross-word triphone model using the ISIP trainer. However, us-
ing the same type of machine, training in HTK took only seven
hours, about one-sixth the time needed for the ISIP system. This
may have been due to the effect of using pruning in the HTK
training. As the performance of HTK is better than the baseline,
the pruning in training does not appear to affect performance.

In the decoding, similar to the training, an increased com-
puting power reduced the decoding time for the Nov 92 clean



data (330 test data in testset 1)from 50 CPU hour [3] to about
ten hours when using the ISIP recognition system. The decod-
ing was further speeded up to six hours using the HTK at a
prune with of 250.

Table 5: HTK baseline clean train(frontend: HTK, backend:
HTK) CMS, 4mixture, pruning=250 .

Testset A B C D Avg.
WER 11.2% 56.8% 42.2% 73.6% 59.7%

Relative 22.8% 18% 30.4% 9.6% 14.5%
imp. (ISIP)

Table 6: HTK baseline multicondition train(frontend: HTK,
backend: HTK) CMS, 4mixture, pruning=250 .

Testset A B C D Avg.
WER 18.1% 26% 30.4% 40.6% 32%

Relative 17.1% 16.9% 35.9% 16.8% 19.2%
imp. (ISIP)

Table 7: Processing time on Aurora 4 tasks.

ISIP HTK
Training (clean train) 40 hours 7 hours

Testing (standard Nov’92 330) 10 hours 6 hours

3. The issue of model complexity
As mentioned in [3], the original Aurora 4 tasks were designed
to use 16-mixture, cross-word triphone models. Because high
computational time have been the result, the model complexity
is finally reduced to four mixtures. The WER on clean data
evaluation (Testset A) is increased by 20% after the mixture
reduction [3]. However, no further analysis is performed on
the effect of the noisy data. It is well-known that, although the
likelihood of the training data increases monotonically as the
model complexity increases, the likelihood of the testing data
may actually decrease due to over-training. This is especially
true in the mis-matched conditions. A highly optimized system
may perform worse. In our experiment, we investigated how the
robustness changes with model complexity.

We studied an extreme case by reducing the model from
four mixtures to one mixture. All other settings remained the
same as in the four mixture experiment. Table 8 shows the per-
formance of using the one mixture models. Compared with the
four mixtures model, only the testset A, the clean data with the
same channel, degrades. The other three testsets perform as
well as, or better than, the four mixtures model. In addition, us-
ing the one mixture models reduces the decoding time by 50%.
The result is consistent with our expectation that models with
less mixtures have higher variances and thus, are more robust to
mis-match at the price of less accurate modeling. The less accu-
rate modeling causes the clean test (testset A) result to degrade.
However, in the other testset, it seems that the robustness is suf-
ficient to compensate for the lost in accuracy. This suggests that
one way to deal with noisy test data is to vary the number of
mixtures during the test with less mixtures in higher mis-match,
and more mixtures when clean.

Table 8: HTK clean train with 1 mixture model(frontend: HTK,
backend: HTK) CMS , pruning=250

Testset A B C D Avg.
WER 16.5% 57.5% 43.2% 72.7% 60.1%

Relative -13.8% 17% 28.7% 9.6% 13.9%
imp. (ISIP)

Relative -47.32% -1.2% -2.3% 1.6% -0.6%
imp. (HTK)

4. Noise adaptation in Aurora 4 task
Instead of changing the model complexity, one can transform
the models to match the test conditions. In this paper, we report
the result of using the Maximum Likelihood Linear Regression
(MLLR) [7], which is widely used in speaker adaptation tasks,
in the Aurora 4 tasks. MLLR has been applied in environment
adaptation [8].In speaker adaptation, non-speech models, such
as silence and short pause, are typically not adapted because
they are not speaker dependent. However, in noise and chan-
nel adaptation, accurate non-speech models can improve speech
alignment during the decoding, and reduces insertion error sig-
nificantly.

4.1. Unsupervised MLLR with 1 utterance as adaptation
data

For one utterance unsupervised MLLR, the testing utterance
was first decoded with the clean model and the decoded phone
transcription obtained was then used to adapt the clean model
based by the MLLR technique. Only the Gaussian means were
adapted with a 32-node regression tree. The first split of the
regression class tree separates the speech and non-speech mod-
els. That is, the non-speech models (silence, short pause) and
speech sounds were adapted separately. The testing utterance
was decoded again using the adapted model.

Table 9 tabulates the result in an unsupervised MLLR with
one utterance of adaption data. A significant improvement was
obtained. In particular, testsets B & D (Noisy data in two chan-
nels) improved by more than 12%. Although the testing utter-
ances needed to be decoded twice, the second decoding using
the adapted models was much faster than the first one because
of the model improvement resulting in the average processing
time being increased only by about 20%.

When we compared the result on Table 5, the testset A
(clean test data) degraded a little bit (from 11.2% to 11.3%).
The fact that the clean data do not contain any noise or mis-
match channel, it suggests that speaker adaptation with only one
utterance does not improve the performance much. However,
more significant improvement was obtained in Testset C, clean
data with different channel suggesting that the gain comes from
channel adaptation. To understand the relationship between
amount of data, speaker and environmental effect in adaptation,
we further tested MLLR adaptation as reported in the next sec-
tion.

4.2. Unsupervised MLLR using 3 utterance of adaptation
data

To see how significant more data can help in adapting to the en-
vironment, the number of adaptation utterances was increased
to three. After the three utterances were decoded with the clean
model, adaptation was performed in two settings. In the first
set, three utterances from the same speaker were used for adap-



Table 9: MLLR adaptation (1 utt) .

Testset A B C D Avg.
WER 11.3% 48.7% 35.4% 64.4% 51.8

Relative 22% 29.7% 41.6% 20.9% 25.9%
imp. (ISIP)

Relative -0.1% 14.3% 16.1% 12.5% 13.2%
imp. (HTK)

tation. the aim was to increase the speaker characteristics in the
adaptation data and show how much gain the combined speaker
and environmental adaptation can attained via MLLR. In the
second set, three utterances from three different speakers se-
lected randomly in the testset were used as adaptation data. The
aim was to minimize the speaker effect but allowing more data
for environmental adaptation.

Table 10 and Table 11 show the results of the unsupervised
MLLR using three utterance of adaptation data from the same
speaker and different speakers respectively. It is clear to see
that increasing the adaptation data gives a much better result. In
testset A, a 5% improvement is obtained when the adaptation
data comes from the same speaker while no improvement is ob-
tained when using three different speakers. Thus, as expected,
speaker effect is minimized by using three different speakers
and the gains for testset B,C and D can be argued to have come
solely from environmental adaptation. Comparing the results in
Table 10 with Table 11, additional gain of 3-8% were resulted
for testsets B and C because of speaker adaptation. This shows
that a significant larger portion of the gain comes from adapting
to the noise and channel environment. However, for testset C,
The MLLR using three utterances from different speakers per-
formed poorly and is not consistent with the other results. We
are still investigating the underlying reasons.

Table 10: MLLR adaptation (3 utts from same speaker) .

Testset A B C D Avg.
WER 10.7% 35.5% 24.4% 52% 40%

Relative 26.2% 48.8% 59.7% 36.1% 42.8%
imp. (ISIP)

Relative 4.5% 37.5% 42.2% 29.3% 33%
imp. (HTK)

Table 11: MLLR adaptation (3 utts from different speakers) .

Testset A B C D Avg.
WER 11.2% 38.1% 39% 60% 45.6%

Relative 22.8% 45% 35.6% 26.3% 34.8%
imp. (ISIP)

Relative 0% 32.9% 7.6% 18.5% 23.6%
imp. (HTK)

5. Conclusion
In this paper, we report our experience of performing Aurora
4 tasks using HTK. We have shown that using HTK signifi-
cantly improve the the accuracy of Aurora 4 baseline evaluation
and can be performed with shorter processing time. In addi-
tion, the use of sentence-level CMS can significantly improve

the robustness of the model. We further investigate the relation-
ship between model complexity and robustness, showing that a
simple single mixture model which requires significantly less
processing time, can perform as well as the 4-mixture mod-
els under noisy conditions. We believe that by optimizing the
model complexity, a good balance between the performance and
processing time can be achieved. In addition, we show that
noise adaptation can be performed using MLLR technique re-
sulting in significant improvement. By performing adaptation
using data from different speakers to remove the contribution of
speaker adaptation, we showed that the gain from MLLR comes
mostly from noise and channel adaptation while speaker adap-
tation contributed less.

As the processing time is reduced, it may be possible to re-
vert back to using the 16-mixture model as originally suggested.
Using 16-mixture models may also increase the flexibility of
optimize the model complexity. Further study will be focused
on how to obtain an optimal model complexity and how to im-
prove the noise adaptation in terms of accuracy and processing
time.

6. Acknowledgement
This work is partially supported by Hong Kong RGC, under the
Central allocation Grant number HKUST CA02/03.EG05.

7. References
[1] H. G. Hirsch and D. Pearce, “The AURORA experimen-

tal framework for the performance evaluations of speech
recognition systems under noisy conditions,” in ISCA
ITRW ASR2000 “Automatic Speech Recognition: Chal-
lenges for the Next Millennium”, Paris, France, Septem-
ber 2000.

[2] Jasha Droppo, Li Deng and Alex Aero, “Evaluation of
SPLICE on the Aurora 2 and 3 tasks,” International
Conference on Spoken Language Processing, September
2002, pp.29-32

[3] N. Parihar and J. Picone, “DSR Front End LVCSR Evalu-
ation,” AU/384/02, Aurora Working Group, Dec. 2002

[4] “ETSI ES 201 108 v1.1.3 Speech Processing, Transmis-
sion and Quality Aspects(STQ); Distributed speech recog-
nition; Front-end feature extraction algorithm; Compres-
sion algorithms,” ETSI, September 2003

[5] Steve Young, Gunnar Evermann, Dan Kershaw, Gareth
Moore, Jukia Odell, Dava Ollason, Dan Povey, Valtcho
Valtchev, Phil Woodland, “The HTK Book (for HTK Ver-
sion 3.2),” Microsoft Corporation, Cambridge University
Engineering Department,December 2002

[6] Yiu-Pong Lai and Manhung Siu, “Maximum Likeli-
hood Normalization for Robust Speech Recognition,” Eu-
rospeech 2003, Geneva, Switzerland, Sep, 2003

[7] C. J. Leggetter, P. C. Woodland, “Maximum likelihood
linear regression for speaker adaptation of continuous
density hidden Markov models,” Computer Speech and
Language 9, 1995 pp 171-186

[8] Prabhu Raghavan, ”Speaker and Environment Adaptation
in Continuous Speech Recognition,” CAIP Technicak Re-
port No. TR-227, 1998.


